

International Vaccine Technology Workshop

Research Needed for New Technologies

Jonathan Seals
Director, Strategic Science and Technology
HHS/ASPR/BARDA

Health & Human Services

Office of the Assistant Secretary for Preparedness and Response (ASPR)

Profit Commercial Markets Products Technology

Big Pharma/SME's

Private Enterprise

Health & Human Services Office of the Assistant Secretary for Preparedness

Office of the Assistant Secretary for Preparedness and Response (ASPR)

Profit

Commercial Markets

Products

Technology

Big Pharma/SME's

Private Enterprise

Public Health Markets

Health & Human Services

Office of the Assistant Secretary for Preparedness and Response (ASPR)

*Innovations

Private Sector Model

Public Health Markets

Public Health
Sector
Governments
NGO's
Charities

Big Pharma/SME's

Private Enterprise

Private Enterprise

Private Enterprise

*Innovations

Big Pharma/SME's

Private Enterprise

*Innovations

Public Health Sector support drives

- Production of vaccines for which there is not a profitable market
- Construction and maintenance of manufacturing capacity beyond what is needed for commercial use
- Development and licensure of vaccines for which there are not profitable markets
- Development and evaluation of innovative technologies and products that have a higher risk profile than established technologies
- Comparison of innovative and established technologies and licensure of advantageous new products and processes

Technologies for Vaccine Production

Established

- Killed or live vaccines
- Egg or cell production
- One-by-one development
- Dedicated facilities
- Reusable stainless steel
- Fixed capacity
- Capital-intensive
- High incremental cost
- Regulatory clarity
- Low-risk

Evolving

- Engineered vaccines
- Alternate production hosts
- Platform technologies
- Flexible facilities
- Disposable technology
- Surge capacity
- Capital-sparing
- Low incremental cost
- Regulatory uncertainty
- High-risk

(ASPR)

Technologies for Building Vaccine Capacity

Established

- Record of success and reliability
- Regulatory history
- Capital-intensive
- Capacity, cost limitations

Evolving

- Unproven performance
- Uncertain path forward
- Possible simpler infrastructure
- Potential for higher capacity, lower cost

Research Gaps in Evaluation of Technical Options

- Full development of innovative products and technology
- Comparison of innovative products and technologies with established systems
- Late-stage support for small biotechs
 - Development capability and expertise
 - Production capacity
- Regulatory clarity
- Clinical trial capacity

Funding Opportunities for Technology Assessment

- U.S. government
 - HHS (ASPR/BARDA, OGHA, NIH, CDC, FDA)
 - DOD
- WHO
- PATH
- Other American, European, and Asian governments
- Other NGO's and charities
- PDP's
- Industry
 - Commercial operations
 - Research institutes

Path Forward

- Public Health sector needs to be proactive in supporting and directing vaccine development and manufacturing in ways that best achieve its goals
- Public Health sector funders need to evaluate best solutions to meeting vaccine availability needs
- Growing markets in the developing world will attract increased interest from private enterprise in supplying vaccine
- Partnership models that involve governments, public health advocates, and industry are likely to prove the most effective path to finding solutions for vaccine availability